TEXTURE CLASSIFICATION USING WEIGHTED PROBABILISTIC NEURAL NETWORKS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Texture Classification Using Tree-structured Wavelet Transform and Neural Networks

In this paper a new approach for texture classification problem is presented. Tree-structured wavelet transform for the pre-processing task while the neural network is used for the classification task. The energy values obtained at the subbands are used for the input vector of the neural network system. The subbands where the energy values are greater than a threshold are determined and it is t...

متن کامل

Texture Classification Using Neural Networks and Local Granulometries

This paper presents a method for segmenting interstitium and tubules in images of kidneys' biopsies. Openings by structuring elements of increasing size, forming a granulometry, were performed on the entire image. For every pixel x and for each size of the structuring element the volume over a small window centered at x was measured (a local Granulometry). The vectors deened as the volume gradi...

متن کامل

Using filter banks in Convolutional Neural Networks for texture classification

Deep learning has established many new state of the art solutions in the last decade in areas such as object, scene and speech recognition. In particular Convolutional Neural Network (CNN) is a category of deep learning which obtains excellent results in object detection and recognition tasks. Its architecture is indeed well suited to object analysis by learning and classifying complex (deep) f...

متن کامل

Wavelet Convolutional Neural Networks for Texture Classification

Texture classification is an important and challenging problem in many image processing applications. While convolutional neural networks (CNNs) achieved significant successes for image classification, texture classification remains a difficult problem since textures usually do not contain enough information regarding the shape of object. In image processing, texture classification has been tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Image Processing and Vision Science

سال: 2012

ISSN: 2278-1110

DOI: 10.47893/ijipvs.2012.1023